Search for the product you are looking for
研发中心

News

Slide down

Why Can’t the Humidity Drop in a Temperature & Humidity Test Chamber?

Source:LINPIN Time:2025-04-01 Category:Industry News

With the rapid development of industrial production, temperature and humidity test chambers have become essential equipment for simulating external climatic conditions. These chambers replicate temperature and humidity environments to evaluate product adaptability under various conditions.

While operating the test chamber is relatively straightforward, users may encounter common issues, such as the inability to reduce humidity. If this problem occurs, the first step is to check whether the humidification system is functioning normally. If the system is operating correctly and there is water in the tank, further investigation is needed to determine why the humidity remains at 100% without dropping. Identifying the root cause is crucial for effective troubleshooting.

temperature and humidity test chambers

Possible Causes and Solutions:
Check the Humidity System’s Water Supply and Refrigeration

If the compressor fails to cool, the air cannot be converted into cold air, preventing humidity from decreasing. Ensure the refrigeration system is working properly.
Inspect the Humidity Sensor and Wet Bulb

Open the chamber door and locate the two sensors at the upper right rear: the higher one is the temperature sensor, and the lower one is the humidity sensor.
Focus on the humidity sensor and verify whether the gauze is correctly positioned.
Adjust or Replace the Gauze if Misplaced or Dirty

If the gauze is displaced, reposition it over the humidity sensor.
The gauze acts as a sensing medium—without it, the chamber cannot detect humidity accurately, leading to incorrect readings.
Regularly inspect and replace the gauze, as dirt buildup can impair its sensitivity.
Conclusion
Although temperature and humidity test chambers are relatively simple to operate, minor oversights—such as improper gauze placement—can cause significant issues like uncontrolled humidity. Therefore, users should pay close attention to details like sensor maintenance to ensure accurate and reliable test results.

By performing routine checks and addressing these small but critical factors, users can prevent humidity control problems and maintain optimal chamber performance.

News Recommendation
Product reliability is no longer governed solely by design rules and manufacturing precision; it is equally decided by a product’s ability to survive sudden climatic extremes. Among all environmental stressors, rapid temperature change is the single most frequent root-cause of field failures in electronic components, automotive assemblies, and aerospace hardware.
Thermal shock test chambers, renowned for their outstanding stability and reliability, are extensively employed in the testing of automation components, telecommunications equipment, plastics, aerospace hardware, chemical materials, LEDs, and electronic devices.
Aging test chambers are widely used across various industries and come in many types. So, what are the different types, and what are their purposes?
The rain test chamber, as a specialized instrument designed to evaluate the waterproof performance of products, plays an indispensable role across various industries. From everyday essentials like mobile phones and flashlights to highly precise and reliable lighting systems and signaling devices in the aerospace sector, waterproof performance remains a critical aspect of product design and quality control.
A constant temperature and humidity test chamber is designed to maintain stable temperature and humidity conditions.
Product Recommendation
Telegram WhatsApp Facebook VK LinkedIn