Search for the product you are looking for
研发中心

News

Slide down

Factors Affecting the Lifespan of a Cold and Hot Shock Test Chamber

Source:LINPIN Time:2025-03-12 Category:Industry News

Cold and hot shock test chambers are widely used in various industries such as automotive parts, communications, plastics, aerospace, chemical materials, LED, and electronic testing. These chambers provide stability and reliability, driving the development of these sectors. However, like any other equipment, their lifespan can be affected by several factors. Understanding these factors is crucial for extending the lifespan of the test chambers.
1. Humidity and Moisture
Humidity accelerates the aging process of the equipment, reducing its lifespan. Sources of moisture, such as rain, humidity, and dew, can cause different levels of damage. For example, dew can cause more severe damage than rain because it adheres to surfaces for longer periods, leading to more significant moisture absorption and accelerated aging.
2. Material Composition and Light Exposure
Different materials have varying tolerances to light intensity, which is a key factor in aging. For instance, durable materials like plastics and coatings may not experience significant aging under light exposure. However, some materials may suffer severe aging when exposed to high light intensity, shortening the equipment’s lifespan.
3. High Ambient Temperatures
High temperatures around the test chamber can increase light intensity and damage, accelerating the aging process. Although temperature does not directly change light intensity, there is a correlation. Therefore, it is essential to strictly control temperature limits during testing to prevent equipment aging.
4. Regular Maintenance
To extend the lifespan of cold and hot shock test chambers, regular maintenance is crucial. This includes cleaning components such as condensers and ensuring that all systems are functioning properly.
In summary, understanding and addressing these factors can help extend the lifespan of cold and hot shock test chambers. Regular maintenance and proper operating conditions are key to maximizing their efficiency and longevity.

News Recommendation
Accurate temperature control in a high-low temperature alternating humidity test chamber enhances testing precision. Therefore, it is essential to understand the temperature control process of the testing equipment.
Juneng (Ningbo) Power Technology Co., Ltd. (referred to as Juneng Technology) is headquartered in Ningbo, Zhejiang. It is a high-tech company that integrates R&D, manufacturing, and sales, with a core focus on intelligent photovoltaic and energy storage systems.
As is well known, the inner chamber of a UV aging test chamber is typically made of stainless steel, while the outer chamber is constructed from steel plates coated with paint. The choice of stainless steel material can significantly impact the test results, while the selection of paint affects the device's appearance and usability.
As the core functional unit of salt spray test chambers, temperature control directly determines the reliability of salt spray environment simulation and the reproducibility of test results.
To ensure the electrical, mechanical and thermodynamic integrity of constant temperature and humidity test chambers (hereafter “the chamber”), to standardize operating procedures, and to reduce failure and accident rates, this instruction is established. It applies to all programmable, single-point and walk-in chambers that are newly purchased, in service or relocated.
Product Recommendation
Telegram WhatsApp Facebook VK LinkedIn