Search for the product you are looking for
研发中心

News

Slide down

Factors Affecting the Lifespan of a Cold and Hot Shock Test Chamber

Source:LINPIN Time:2025-03-12 Category:Industry News

Cold and hot shock test chambers are widely used in various industries such as automotive parts, communications, plastics, aerospace, chemical materials, LED, and electronic testing. These chambers provide stability and reliability, driving the development of these sectors. However, like any other equipment, their lifespan can be affected by several factors. Understanding these factors is crucial for extending the lifespan of the test chambers.
1. Humidity and Moisture
Humidity accelerates the aging process of the equipment, reducing its lifespan. Sources of moisture, such as rain, humidity, and dew, can cause different levels of damage. For example, dew can cause more severe damage than rain because it adheres to surfaces for longer periods, leading to more significant moisture absorption and accelerated aging.
2. Material Composition and Light Exposure
Different materials have varying tolerances to light intensity, which is a key factor in aging. For instance, durable materials like plastics and coatings may not experience significant aging under light exposure. However, some materials may suffer severe aging when exposed to high light intensity, shortening the equipment’s lifespan.
3. High Ambient Temperatures
High temperatures around the test chamber can increase light intensity and damage, accelerating the aging process. Although temperature does not directly change light intensity, there is a correlation. Therefore, it is essential to strictly control temperature limits during testing to prevent equipment aging.
4. Regular Maintenance
To extend the lifespan of cold and hot shock test chambers, regular maintenance is crucial. This includes cleaning components such as condensers and ensuring that all systems are functioning properly.
In summary, understanding and addressing these factors can help extend the lifespan of cold and hot shock test chambers. Regular maintenance and proper operating conditions are key to maximizing their efficiency and longevity.

News Recommendation
Rain test chambers, also commonly referred to as waterproof test chambers or box-type rain test chambers, are primarily used to evaluate whether the casings or sealed components of electrical and electronic products, household appliances, and various lighting fixtures are affected during rain testing, and whether their operational performance and adaptability can be maintained.
Chongqing Chuanyi Microcircuit Co., Ltd. (referred to as Chuanyi Micro) was established in 2002 and is a state-owned enterprise under the China Four United Group.
During the transportation of a thermal shock test chamber, technicians often remind operators to keep the equipment as level as possible to avoid oil blockage.
Cold and hot shock test chambers utilize high-temperature and low-temperature zones during testing. In the testing process, two-box models involve placing the test product in high and low-temperature zones for cyclic exposure, while three-box models involve blowing high- and low-temperature gases onto the product alternately.
With the continuous tightening of ingress-protection requirements in automotive electronics, low-voltage power distribution and photovoltaic industries, repeatable, quantifiable and traceable artificial-rain testing has replaced the traditional “splash-and-inspect” approach and become the core means of verifying sealing performance.
Product Recommendation
Telegram WhatsApp Facebook VK LinkedIn