Search for the product you are looking for
研发中心

News

Slide down

Warning: These Factors Can Affect UV Aging Test Chambers

Source:LINPIN Time:2025-05-10 Category:Industry News

Certain factors can impact the effectiveness of UV aging test chambers. Therefore, it is essential to remain vigilant and pay close attention to these factors during equipment operation. By continuously monitoring and improving these aspects, the efficiency of the equipment can be enhanced. Below, we examine these influencing factors.

Airflow Speed has a certain impact on UV aging test chambers: If the airflow speed near the surface of the specimen is too high, it can affect the temperature rise of the sample and introduce errors in the open thermopile used to monitor radiation intensity. In natural environments, it is rare to encounter conditions with zero wind speed and intense solar radiation simultaneously. Therefore, when evaluating the effects of different wind speeds on specimens, testing must be conducted in accordance with specified requirements.

UV aging test chambers

Temperature and Humidity Inside the Chamber can influence the test results. How should the temperature inside the chamber be managed? During both the irradiation and non-irradiation phases, the temperature must be controlled according to the prescribed test procedures. Operating standards should be set based on the required temperature levels for different applications.

Effect of Humidity on Testing: The photochemical degradation of many materials, coatings, and other substances varies significantly under different humidity conditions. Since humidity requirements differ depending on the material, specific humidity levels should be determined in accordance with relevant standards.
Selection of Mounting Racks is another influencing factor: The thermal characteristics and installation methods of different racks can affect the temperature rise of specimens. Therefore, careful consideration must be given to the properties of the racks when selecting them.

Surface Contamination of Specimens can also have an impact: Dust or other contaminants may alter the absorption properties of specimens. To avoid this, specimens should be kept clean throughout the testing process.

Ozone and Other Pollutant Gases can affect UV aging test chambers: Ozone is generated inside the chamber due to short-wave UV radiation from the light source. However, ozone and other pollutant gases can influence the degradation process of certain materials. To mitigate this effect, operators must follow relevant guidelines to expel harmful gases from the chamber.

News Recommendation
The UV aging test chamber is a device that simulates ultraviolet radiation and condensation climate environments by using fluorescent ultraviolet lamps as the light source.
To ensure that all salt spray test chambers remain in optimal operating condition, deliver accurate test data and achieve maximum service life, this work instruction is established. Scope
After long-term use, components or systems of a high-low temperature and humidity test chamber may encounter certain issues.
The high-low temperature test chamber is a cornerstone of environmental-reliability verification. Its mission is to reproduce extreme temperature and humidity conditions in a controlled manner so that performance degradation and failure modes of the Device Under Test (DUT) can be assessed across its life cycle.
UV weathering test chambers are typically equipped with either UVA-340 or UVB-313 cold-cathode fluorescent UV lamps. The spectral differences between the two types directly influence the acceleration factor and the reliability of test results.
Product Recommendation
Telegram WhatsApp Facebook VK LinkedIn