Search for the product you are looking for
研发中心

News

Slide down

How to Test the Temperature Recovery Time of a Thermal Shock Chamber

Source:LINPIN Time:2025-03-26 Category:Industry News

If the temperature recovery time falls outside the specified range, it can affect the test results of the thermal shock chamber. To routinely test the temperature recovery time of the equipment, you can follow the steps below.

Process for Testing Recovery Time:

Install the temperature measurement sensor at the designated position in the thermal shock chamber.
Adjust the temperature controls of the low-temperature chamber and high-temperature chamber to the required values.
Allow the chambers to achieve the desired heating and cooling temperatures.

thermal shock chamber
Once the equipment enters the temperature control state, stabilize it for half an hour or according to the product technical requirements, and record the temperature at the measurement points.
Place the test load into the high-temperature chamber and select the appropriate holding time based on relevant standards and product technical conditions.
Set the equipment’s transition time and transfer the test load from the high-temperature chamber to the low-temperature chamber. Observe and record the temperature at the measurement points during this process.
Repeat the same method to transfer the test load from the low-temperature chamber back to the high-temperature chamber, while observing and recording the temperature at the measurement points.
After recording the two scenarios—transferring the test load from the high-temperature chamber to the low-temperature chamber and vice versa—measure the shortest time required for the temperature at the measurement points to return to the state before the test load was placed.
Linpin is a manufacturer of thermal shock chambers. For any questions regarding test equipment, you can consult our technical staff, who will provide tailored solutions based on your needs. The above outlines the main workflow for testing the temperature recovery time of the equipment. Through this explanation, we hope you have gained a deeper understanding of the relevant equipment. Thermal shock chambers are structurally divided into two-chamber and three-chamber types, and the workflow may vary slightly depending on the structure. For more information about the equipment, please visit our company website or call 400-066-2888 to inquire about the relevant parameters.

News Recommendation
The temperature shock test chamber, also known as a thermal shock test chamber or high-low temperature impact test chamber, is a device used to simulate extreme temperature variations under controlled environmental conditions.
In many production workshops of enterprises, constant temperature and humidity test chambers are often indispensable pieces of equipment. However, many operators tend to overlook the daily cleaning of these devices during use, leading to a rapid accumulation of grease and dust on the equipment.
High and low temperature test chambers are designed to simulate natural climatic conditions to test the high- and low-temperature endurance of products or materials under alternating temperature changes.
The humidification process in a constant temperature and humidity test chamber essentially involves increasing the water vapor partial pressure. The initial humidification method was to spray water onto the chamber walls and control the water temperature to regulate the saturation pressure of the water surface.
You may have heard the recommendation that "a temperature & humidity test chamber should use purified water." But why is that? Can other types of water not be used?
Product Recommendation
Telegram WhatsApp Facebook VK LinkedIn