Search for the product you are looking for
研发中心

News

Slide down

Troubleshooting Guide for Slow Cooling Rate in High-Low Temperature Test Chambers

Source:LINPIN Time:2025-09-06 Category:Industry News

The high-low temperature test chamber is the cornerstone of environmental reliability testing. Its cooling rate dictates test duration and data validity. Field data from 500+ chambers over ten years show that “slow cooling” accounts for 38 % of all malfunctions, second only to “no cooling”. This paper, aligned with GB/T 2423.1 and IEC 60068-3-5, presents a systematic approach to diagnosing and correcting slow-cooling events for laboratories, metrology bodies and manufacturers.
High-Low Temperature Test Chambers
Technical Definition of Cooling Rate
Nominal: empty chamber, +25 °C to –40 °C in ≤ 60 min (JB/T 9512 class A).
Measured: 1 Hz sampling, average of five runs; deviation > +10 % is labelled “slow”.
Boundary conditions: ambient 23 °C ± 2 °C, RH ≤ 65 %, empty, air speed 0.5 m s⁻¹. Any deviation requires correction factor Kθ.
Fault Tree and Weightings
Top-level factors: condenser heat-transfer resistance, ambient coupling, refrigeration circuit, air-side flow, control strategy, load & set-point.
Condenser fouling: 27 % of cases.
Insufficient wall clearance or nearby heat sources: 19 %.
Refrigerant micro-leaks, saturated dryer, expansion-valve drift: 22 %.
Blower speed loss or duct leakage: 15 %.
Conservative PID or faulty defrost logic: 9 %.
Excessive specimen mass or aggressive set-point: 8 %.
Step-by-Step Diagnosis and Quantification
4.1 Condenser Resistance
Measure air-temperature rise ΔT across coil; normal ≤ 8 K, fouled ≥ 12 K.
Measure static-pressure difference ΔP; limit 15 Pa, cleaning required at 30 Pa.
Cleaning: power-off, remove top panel, 0.3 MPa nitrogen blow, 40 °C neutral detergent spray, rinse, 110 °C dry, re-assemble. Expect ≥ 30 % reduction in ΔT.
4.2 Ambient Coupling
Air-cooled units need ≥ 0.6 m from walls, water-cooled ≥ 0.8 m; no ceiling obstruction within 1 m of exhaust.
Ambient range 5–30 °C; every 1 °C above 30 °C lengthens pull-down time by 2.3 %.
Keep ovens or furnaces behind a physical barrier; supply-air temperature must be within 3 K of room air.
4.3 Refrigeration Circuit
R404A at +25 °C ambient: high 1.5 ± 0.1 MPa, low 0.35 ± 0.05 MPa.
High < 1.3 MPa plus low > 0.45 MPa and superheat > 12 K indicate under-charge.
Leak detector sensitivity ≥ 1 g yr⁻¹; annual loss > 1 % requires brazing repair.
Dry-filter temperature difference ≤ 2 K; replace if > 4 K.
Thermal-expansion-valve superheat 6–8 K; electronic valve step-loss < 0.5 %, otherwise replace driver.
4.4 Air-Side Flow
Evaporator face velocity 1.2 ± 0.2 m s⁻¹ (five-point mean).
If < 0.8 m s⁻¹, check blower capacitor, ice or corrosion on impeller, torn flexible duct.
Remedy: change capacitor, rebalance to G 6.3, seal ducts with high-temperature aluminium tape.
4.5 Control Strategy
Defrost initiates when evap. temp. < –25 °C for 40 min; if PID output < 20 % and defrost still triggers, controller misjudges load and reduces speed.
Implement “rate lock-out”: if ΔT/Δt < 0.3 K min⁻¹ for 10 min, defrost is inhibited. PID starting point for empty high-mass chamber: Kp = 1.8, Ki = 0.05, Kd = 0.2; reduce Ki by 30 % when 100 kg aluminium load is present. 4.6 Load & Set-Point Heat load Q = m c ΔT / t. 50 kg steel, c = 0.49 kJ kg⁻¹ K⁻¹, ΔT = 65 K, t = 1 h → Q = 0.44 kW (8.8 % of 5 kW capacity). If Q > 15 %, extend pre-cooling or use step set-points.
Avoid aggressive over-shoot: target –40 °C, do not set –45 °C; instead set –35 °C, wait 10 min, then –40 °C.
Thirty-Minute Field Checklist
Minutes 0–5: verify ambient, wall distance, top exhaust.
Minutes 6–10: read high & low pressure, evap. temp., current.
Minutes 11–20: non-contact ΔT on condenser, velocity grid on evaporator.
Minutes 21–25: inspect filters, capacitor, sight-glass.
Minutes 26–30: log PID output, defrost state, load estimate.
If all values normal yet pull-down > 110 % of nominal, label “hidden system mismatch” and schedule factory calorimeter test.
Maintenance SOP & Intervals
Condenser: daily blow-off, quarterly wash & dry, annual fin-thickness check—replace if < 90 % of original. Dry filter: replace yearly or when ΔP > 0.3 bar.
Blower: visual daily, balance quarterly, grease bearing with 2 g Li-soap grease yearly.
Refrigerant: annual leak test; after recharge run 4 h and analyse acid value < 0.1 mg KOH g⁻¹.
Controller: back-up parameters daily, calibrate sensors quarterly, update firmware and burn-in 72 h yearly.
Closing Remarks
Over ninety per cent of slow-cooling events stem from fouling, ambient issues or minor leaks. Apply the loop “boundary check – quantify – clean/repair – verify” and the chamber usually recovers within two hours. For the remaining ten per cent, factory-level calorimeter testing and model-based re-matching are required. Shift from “fail-and-fix” to “predict-and-prevent” by continuously monitoring discharge pressure, current and condenser ΔT; cloud analytics can issue an alert at a 5 % performance loss, cutting unplanned stops to below one per cent.

News Recommendation
Cold and thermal shock test chamber on the market is divided into two categories, a two-compartment type, including high-temperature region and low-temperature region, the test object were tested in two different temperatures in the area of the test, alternating hot and cold test; the other is a three-compartment type, in addition to high-temperature and low-temperature areas, there is also a test area, and the difference between the two-compartment is that the three-compartment type does not need to be tested directly in the test area.
Salt fog (salt spray) test chambers are standardized instruments designed to determine the corrosion resistance of materials and their protective coatings. The test results serve as a technical basis for reliability design, quality control, and service-life prediction in industries such as electrical and electronic engineering, digital components, plastics, aerospace equipment, and many others.
The operation of the sand and dust test chamber primarily involves using a fan to blow sand and dust of the required concentration at an appropriate flow rate over the surface of the test sample.
If a constant temperature and humidity test chamber malfunctions due to improper operation or lack of maintenance, it will not only affect the progress of work but also incur costs much higher than those of regular maintenance.
Enterprises should pay attention to both the needs of users, but also to pay attention to competitors, and strive to find a balance between user needs and competitors marketing concept, known as “market-oriented”, the core of which is from the user's needs Adhere to the market orientation, the pulse of the user, the foothold and the destination point on the basis of the product “sell”, based on the concept, LF Instruments positive development of 20 ℃/min fast temperature change test chamber and successfully introduced to the market. Based on this concept, LF Instruments has developed a 20℃/min fast temperature change tester and successfully introduced it to the market.
Product Recommendation
Telegram WhatsApp Facebook VK LinkedIn