Search for the product you are looking for
研发中心

News

Slide down

How Does a High-Temperature Test Chamber Achieve Heating?

Source:LINPIN Time:2025-04-21 Category:Industry News

A high-temperature test chamber simulates extreme heat environments to evaluate the performance and parameters of various materials or products under such conditions. Since the equipment must handle high temperatures, its heating method is a crucial aspect. Currently, these chambers primarily use two heating methods, which we will explore below.

1. Ceramic Heating Elements
Ceramic heating elements are made by sintering an electric heating body with ceramic material at high temperatures, forming a fixed heating component. These elements adjust their resistance based on temperature, allowing them to maintain a stable set temperature.

high-temperature test chamber

Advantages:

Easier temperature control
Higher heat transfer efficiency compared to electric heating tubes
2. Electric Heating Tubes
Electric heating tubes consist of a spiral resistance wire encased in a metal tube filled with crystalline magnesium oxide powder. When electricity flows through the resistance wire, heat is generated and transferred through the magnesium oxide powder to the metal tube’s surface, then dispersed into the air or onto the heated object.

Advantages:

Longer lifespan because the resistance wire is not exposed to air
Conclusion
Both heating methods have their strengths. Ceramic heaters offer better temperature control and are more cost-effective, while electric heating tubes excel in durability and performance.

The choice of heating method depends on the specific requirements of the test materials. High-temperature test chambers are widely used in industries such as electronics, automotive parts, chemical materials, construction materials, and scientific research to evaluate heat resistance, dry heat endurance, and other properties.

When selecting a heating method, customers should consider the characteristics of the test materials to optimize testing efficiency and equipment performance.

For more information, visit Linpin Instruments for the latest updates.

News Recommendation
Formaldehyde VOC environmental test chamber, also known as formaldehyde emission testing chambers, are large-scale testing equipment primarily used to simulate standard climatic conditions for measuring the release of formaldehyde from indoor decoration and renovation materials.
In the field of material research and production, the ozone aging test chamber plays a crucial role. It acts like a professional "detection master," precisely simulating an ozone environment to help people gain a deep understanding of the aging performance of materials under specific conditions.
Regularly, staff should master some troubleshooting and handling methods for high and low temperature alternating test chambers. If the equipment exhibits unstable low temperatures, what causes this phenomenon, and how should we address these faults?
In generic reliability standards such as GB/T 2423, IEC 60068 and MIL-STD-810, “damp heat” is treated as an independent climatic stress. The goal is not merely to verify moisture resistance, but to accelerate and expose failure modes triggered by water adsorption, condensation, “breathing” and electrochemical migration.
Product reliability is no longer governed solely by design rules and manufacturing precision; it is equally decided by a product’s ability to survive sudden climatic extremes. Among all environmental stressors, rapid temperature change is the single most frequent root-cause of field failures in electronic components, automotive assemblies, and aerospace hardware.
Product Recommendation
Telegram WhatsApp Facebook VK LinkedIn