Search for the product you are looking for
研发中心

News

Slide down

What Are the Temperature Shock Methods of a High-Low Temperature Shock Test Chamber?

Source:LINPIN Time:2025-03-13 Category:Industry News

A high-low temperature shock test chamber is designed to evaluate the endurance of products under extremely high and extremely low temperature conditions. It helps to determine the chemical or physical changes caused by the thermal expansion and contraction of the test samples in a short period.
To meet the diverse market demands, temperature shock methods can be categorized into the following three types:
Type One: Two-Chamber Cold and Hot Shock Test Chamber (Gas Phase)
The “two-chambers” refer to the high-temperature chamber and the low-temperature chamber. This type primarily uses a motor to trigger the movement of a basket, which holds the test products and transfers them between the high- and low-temperature chambers to achieve temperature transitions. It is a dynamic product. The temperature shock transition time for this type of test chamber can be completed within just 15 seconds, and the recovery time does not exceed 5 minutes.
The two-chamber device does not require additional exhaust time. It operates by using a motor to drive the basket’s vertical movement. However, the downside is that this mechanical movement can cause wear and tear, necessitating more frequent equipment inspections. Therefore, this type of high-low temperature shock test chamber requires more time and resources for maintenance and repair.
Type Two: Two-Chamber High-Low Temperature Shock Test Chamber (Liquid Phase)
Silicone oil is filled into the high- and low-temperature chambers, and the test products are placed inside a basket. The basket moves continuously between the high- and low-temperature chambers to achieve rapid temperature changes. Unlike the previously mentioned two-chamber test chamber, this type of high-low temperature shock test chamber has a faster temperature transition rate.
Type Three: Three-Chamber Cold and Hot Shock Test Chamber
This type includes a high-temperature chamber, a low-temperature chamber, and an ambient-temperature chamber. It is a static product. The test products are tested in the ambient-temperature chamber. By simply opening and closing the dampers between the high-temperature chamber and the ambient chamber, as well as between the low-temperature chamber and the ambient chamber, a high-low temperature shock effect can be created. Since this test device requires exhaust time, the temperature inside the test chamber can quickly return to ambient conditions, facilitating the placement and removal of test samples.
Because the test products do not need to be moved by a motor in this static testing method, it not only saves energy and electricity but also reduces wear and tear on the equipment components. This type of high-low temperature shock test chamber allows the test samples to remain in a relatively stable state during testing. The temperature shock transition can be completed within 3 seconds, and the recovery time is the same as that of the two-chamber type, which is within 5 minutes.

News Recommendation
Salt-spray corrosion testing is the core means of evaluating the resistance of materials and their protective coatings to chloride-containing environments. The test itself only provides an accelerated corrosion “stimulus”; the real technical value lies in the scientific evaluation of the test results.
If an aging test chamber generates static electricity, it can not only affect the test results but may also cause malfunctions or even fires. So, how can we ensure that the test equipment remains free of static electricity?
The sand and dust test chamber is used to evaluate the sealing performance of factory-produced products by simulating the erosion caused by natural wind and sand climates.
Let’s take a look at the specific steps of the rainfall program in a rain test chamber.
One of Linpin's standout products, the high-low temperature test chamber, excels with its impressive heating rate (1.0~3.0℃/min), cooling rate (0.7~1.0℃/min), and thoughtful multi-segment temperature range settings (A: -20℃ to 150℃; B: -40℃ to 150℃; C: -60℃ to 150℃; D: -70℃ to 150℃).
Product Recommendation
Telegram WhatsApp Facebook VK LinkedIn