Search for the product you are looking for
研发中心

News

Slide down

Do You Understand How a Salt Spray Test Chamber Works Before Using It?

Source:LINPIN Time:2025-04-09 Category:Industry News

A salt spray test chamber is an accelerated corrosion environmental testing device. The primary causes of metal corrosion include oxygen, salt particles, pollutants in the air, as well as changes in temperature and humidity. Without proper protection, metal products exposed to long-term use will eventually corrode, affecting both their appearance and functionality. Therefore, salt spray testing is essential before manufacturing metal products to determine material selection and protective measures.

If relying solely on natural atmospheric conditions, such testing would require significant time, labor, and financial resources. Salt spray test chambers reduce these costs by conducting efficient accelerated testing. So, how do they simulate atmospheric conditions for salt spray testing? Let’s delve into the working principle.

salt spray test chamber

To accelerate corrosion, the salt solution concentration used in salt spray test chambers is typically several times or even dozens of times higher than that found in the natural atmosphere. The prepared solution is added to the chamber, and compressed air is delivered to a nozzle. Under pressure, the saline solution is ejected as a fine mist of tiny salt droplets, which are evenly sprayed onto the test specimens. Continuous spraying for 24 to 72 hours leads to the formation of corrosion spots. To speed up the test, the solution concentration and spray volume can be increased.

The later corrosion spots appear, the better the material’s corrosion resistance; conversely, earlier corrosion indicates weaker resistance.

Salt spray corrosion testing is essentially a chemical reaction process. Chloride ions in the salt solution penetrate the metal’s oxide layer, disrupting its stability. These ions continuously adhere to the metal surface, causing persistent damage.

While the principle of a salt spray test chamber is relatively simple, corrosion in natural environments is ever-present, making this test indispensable for product quality control across many industries. Understanding how the device works allows companies to adjust the equipment and test solutions according to their specific product requirements.

News Recommendation
Some may consider the cleaning of high and low-temperature test chambers a minor issue and not take it seriously. However, proper cleaning can improve equipment efficiency, reduce failure rates, and lower operational costs. This article emphasizes the importance of this task and provides a brief guide on cleaning procedures.
Door locks, headlights, electrical dust covers, instrument panels, and other components can be tested for dust resistance using a sand and dust test chamber.
Thermal shock test chambers, as precision testing equipment, rely heavily on compressed air for their stable operation. Regardless of the chamber's structural design, compressed air serves as a critical component in driving rapid temperature transitions and ensuring precise temperature control within the test zone.
Cold and thermal shock test chamber on the market is divided into two categories, a two-compartment type, including high-temperature region and low-temperature region, the test object were in two different temperatures in the area of the test, hot and cold alternating test; the other is a three-compartment type, in addition to high-temperature and low-temperature areas, there is also a test area, and the two-compartment different is that the three-compartment does not need to be directly in the test area for the test, only need to be through the air compression method
Rain test chambers are used to evaluate the waterproofing parameters and performance of automotive components, low-voltage electrical enclosures, and other products. These devices simulate relevant environmental conditions for testing.
Product Recommendation
Telegram WhatsApp Facebook VK LinkedIn