Search for the product you are looking for
研发中心

News

Slide down

Do You Understand How a Salt Spray Test Chamber Works Before Using It?

Source:LINPIN Time:2025-04-09 Category:Industry News

A salt spray test chamber is an accelerated corrosion environmental testing device. The primary causes of metal corrosion include oxygen, salt particles, pollutants in the air, as well as changes in temperature and humidity. Without proper protection, metal products exposed to long-term use will eventually corrode, affecting both their appearance and functionality. Therefore, salt spray testing is essential before manufacturing metal products to determine material selection and protective measures.

If relying solely on natural atmospheric conditions, such testing would require significant time, labor, and financial resources. Salt spray test chambers reduce these costs by conducting efficient accelerated testing. So, how do they simulate atmospheric conditions for salt spray testing? Let’s delve into the working principle.

salt spray test chamber

To accelerate corrosion, the salt solution concentration used in salt spray test chambers is typically several times or even dozens of times higher than that found in the natural atmosphere. The prepared solution is added to the chamber, and compressed air is delivered to a nozzle. Under pressure, the saline solution is ejected as a fine mist of tiny salt droplets, which are evenly sprayed onto the test specimens. Continuous spraying for 24 to 72 hours leads to the formation of corrosion spots. To speed up the test, the solution concentration and spray volume can be increased.

The later corrosion spots appear, the better the material’s corrosion resistance; conversely, earlier corrosion indicates weaker resistance.

Salt spray corrosion testing is essentially a chemical reaction process. Chloride ions in the salt solution penetrate the metal’s oxide layer, disrupting its stability. These ions continuously adhere to the metal surface, causing persistent damage.

While the principle of a salt spray test chamber is relatively simple, corrosion in natural environments is ever-present, making this test indispensable for product quality control across many industries. Understanding how the device works allows companies to adjust the equipment and test solutions according to their specific product requirements.

News Recommendation
If the temperature exceeds the set value during testing in a constant temperature and humidity test chamber, how should we resolve it? Are there any emergency response measures?
The composite salt spray test chamber, as an advanced environmental simulation device, simulates the salt spray conditions found in marine or other corrosive environments to conduct accelerated corrosion tests on materials, coatings, electronic components, etc., in order to evaluate their corrosion resistance.
As a precision testing instrument, the high-low temperature test chamber is designed to evaluate how products withstand changes in environmental temperature and humidity.
In the aerospace, automotive, home-appliance and materials-science sectors, products must routinely undergo prolonged and repeatable exposure within the −80 °C to 0 °C range to verify functional integrity and service life under extreme cold. Nature cannot supply a continuous, controllable and stable sub-zero environment; consequently, low-temperature test chambers are employed to create an artificial cryogenic duty.
When encountering malfunctions in the sand and dust test chamber, how should they be addressed? Is it necessary to contact after-sales service? In fact, some issues can be initially troubleshooted by the customer, such as the following scenarios.
Product Recommendation
Telegram WhatsApp Facebook VK LinkedIn